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optimum vane dimension on the location of the metal shell and
the effect of the wire thickness thereupon.

Finally, it is of interest to make a comparison between the
structures, with and without vanes, in respect of impedance of the
circuit. For numerical appreciation, taking s = 0, N =3, C, = 6.65
(beryllia), 6 = 20°, ¢ /a = 2.5, the optimum vane dimension corre-
sponding to flat dispersion curves is obtained as (b/a),, =1.7,
for the structure with vanes (Fig. 2). For the vaneless structure,
all other parameters remaining unchanged, flat dispersion char-
acteristics result only when the shell is brought relatively close to
the helix, to an optimum value; in this case, for (c/a)qp =
1.25 [7]. Taking these optimized situations, and ya=1.6, the
normalized characteristic impedances of the circuit,
20(L/CY* (1o /€0) "/ tany, with and without vanes, come
out to be 0.22 and 0.13, respectively.
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Magnetostatié Forward Volume Wave
Propagation—Finite Width

L. J. WEINBERG anp J. C. SETHARES, SENIOR MEMBER, 1IEEE

Abstract —The infinite radiation resistance [1] encountered at the low
end of the magnetostatic forward volume wave frequency band for a YIG
layer of finite width is avoided by employing a physically justifiable low
frequency cutoff value higher than that for which radiation resistance would
be infinite. Radiation reactance and insertion loss then can be calculated
and are found to be relatively insensitive to the choice of the cutoff
frequency, except for frequencies very close to cutoff Beam spreading
considerations determine the cuteff frequency.

I. THEORY

By considering Maxwell’s equations with the magnetostatic
approximation and the permeability tensor in the YIG region [2]

b=nolpln 1)
one obtains the potential fupction, in non-YIG regions, in the
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Fig. 1.

Transducer geometry.
form

y= f_mwe

n=0,1,2,3--.

)
where k is the wave number in the x direction, /; is the strip
width (Fig. 1), n represents the width mode and

"”‘*cos 2T ;(Ae*" + Be *v) dk,

K*+(nm/1), n=01,23,--. (3)

The components of % are found from the derivative of . For
n =0, we have the infinite width case. For odd n, the potential
vanishes at the strip ends z =+ /; /2. ‘

For the YIG region, the potential function is taken from the
basic equations to be in the form

=l

tkxcos nT"Lz(A cos aky + Bsinaky ) dk,
1

n=0,1,23,--- (4)

where, for forward volume waves [3]

2
a,[ (1+%ﬂf‘1—

o

7H2 _f._ (5)

and

y=2.8MHz/oe, M=1750 0, f=w/2 (6)

and H is the biasing field magnitude.

Considering the case of no ground planes, we determine the
constants in (2) and (4) for the three regions (Fig. 1) by requiring
Y to be finite at y = +o00, b, to be continuous at y=0 and
y=—d, h, to be continuous at y = — d and, for a given current
distribution

=J,(x), (7N

Application of boundary conditions yields the dispersion relation
(see [3, eq. 17)

hJ\III xII aty =0.

[(a® —1)sinakd —2acos akd] =0

(8)

mar

2a
-1 ma
+ ad”’

m=0,1,2,3---

- 1
k= wd tan 9

a?—-1

There are an infinite number of thickness solution modes,

~ corresponding to the value of m, with m =0 giving the funda-

mental mode.

By utilizing (8) and integrating (7) in the x direction, — oo to
o0, in the usual manner and integrating in the z direction, — /; /2
to [,/2, we obtain all constants in (2) and (4). Appropriate
premultiple factors are used in these integrations.
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Fig. 2. Radiation resistance.

We then obtain expressions for { and the components of 4 in
the three regions. We then perform the usual contour integrations
to find the field equations [3].

The magnetostatic wave power obtained from [1]

1 11/2[ ) ]
P=-— —imy*b dy| dz 10
AT AT (10)
becomes, after utilizing (1) and the dispersion relation
o 3 1, n=0
kT _powt?(k,) 0, n=2,46,
P\ dkacesny 1[4y
s ) 4k, d(a®+1) _(_)’ n=13,5,--
2\ nm
(11)

k, is obtained from the dispersion relation (9), k, is obtained
from (3), J(k,) is the Fourier transform of J.(x) and is obtained
as before [3] for a flat current distribution. Note that even n
produces no solution modes.

The radiation resistance for one strip is, for unity current

R =2P° (12)

and the total radiation resistance is twice R’ since the results are
the same for each of the two waves. S refers to propagation
direction.

When n = 0, the infinite width case, the lower cutoff frequency
is taken as yH where k, vanishes and the power and radiation
resistance are finite there from (11) because of the infinite behav-
ior of a there.

For n> 0, finite width, the power and radiation resistance
would become infinitely large from (11) at the lower cutoff
frequency where k& is zero since this frequency is greater than yH
and « is not infinite there. However, the following is justification
for taking the lower cutoff frequency to be larger than this value
at which k, is zero. When magnetostatic wavelengths A, where
A=27/k, are small compared to the transducer aperture /;, a
well-collimated beam is formed and beam spreading is negligible.
When magnetostatic wavelengths approach or exceed /;, beam
width increases, permitting a smaller portion of the total energy
leaving the transducer to reach the output. This means a lower
radiation resistance. In the limit; /; /A — 0, one would expect the
radiation resistance to vanish. Thus, instead of taking the lower
cutoff frequency to be at which k&, is zero and power and
radiation resistance are infinite from (11) and (12), we take the
lower cutoff frequency to be at which

kw':nc(n'”/ll) (13)
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Fig. 3. Radiation reactance.
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Insertion loss

where n, is a constant determined so that A </,. Appreciable
beam spreading occurs when /; ~ A or when (13) is satisfied for
n,~ 2, when n=1. When n>1, n_is found to be less than 2.

In Fig. 2, we show the total radiation resistance for the first
width mode, n =1, for n, =1, 2, and 3. Here H =893 and d = 25
pm.

In Figs. 3 and 4, we show the total radiation reactance ob-
tained by Hilbert transform and the insertion loss [3] for one
wave, for each of the three values of 7,.

We observe that, except at the very beginning of the band-
width, the results are the same for the three #, values so that the
lower cutoff frequency value is not critical, as long as it is
sufficiently higher than that for which & vanishes.

II. CONCLUSION

We have examined magnetostatic forward volume waves for
finite width and have shown that it is physically justifiable to
remove the end of the bandwidth where & is zero so that the
radiation resistance is not infinite and the radiation reactance
and insertion loss may be calculated.
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