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optimum vane dimension on the location of the metal shell and

the effect of the wire thickness thereupon.

Finally, it is of interest to make a comparison between the

structures, with and without vanes, in respect of impedance of the

circuit. For numerical appreciation, takings = O, N = 3, C, = 6.65
(beryllia), f3= 20°, c/a = 2.5, the optimum vane dimension corre-

sponding to flat dispersion curves is obtained as (b/a) ~Pt= 1.7,
for the structure with vanes (Fig. 2). For the vaneless structure,
all other parameters remaining unc~anged, flat dispersion char-

acteristics result only when the shell is brought relatively close to
the helix, to an optimum value; in this case, for (c/a) .Pt =
1.25 [7]. Taking these optimized situations, and ya = 1.6, the

normalized characteristic impedances of the circuit,
27r(L’/c)l/2(po/fo) .112 tm ~, with ~d without vanes, come

out to be 0.22 and 0.13, respectively.
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Magnetostatic Forward Volume Wave

Propagation-Finite Width

I. J. WEINBERG AND J. C. SETHARES, SENIORMEMBER,lEEE

Abstract —The irtfinite radiation resistance [1] encountered at the low

end of the magnetostatic forward volume wave frequency band for a YIG

layer of finite width is avoided by employing a physically justifiable low

frequency cutoff value higher than that for which radiation resistance would

be infinite. Radiation reactance and insertion loss then can be calculated

and are found to be relatively insensitive to the choice of the cutoff

frequency, except for frequencies very close to cutoff. Beam spreading

considerations determine the cutoff ~requency.

By considering Maxwell’s equations with the magnetostatic

approximation and the permeability tensor in the YIG region [2]

(1)

one obtains the potential fupction, in non-YIG regions, in the
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Fig. 1. Transducer geometry.

form

$ ‘~~me-’k”Xcos ~z(Aez’+ Be-z~’) dk, n = 0,1,2,3 . . .

(2)

where k is the wave number in the x direction, [1 is the strip
width (Fig. 1), n represents the width mode and

~={k2+(n~/11)2, n = 0,1,2,3, . . . . (3)

The components {of ~ are found from the derivative of $. For
n = O, we have the infinite width case. For odd n, the potentiaf
vanishes at the strip ends z = ~ (l/2.

For the YIG region, the potential function is taken from the
basic equations to be in the form

* = J~ e-,k., cos~z(Acosa&+ llsina~y) dk,
–Ce 1

n =0,1,2,3,..

where, for forward volume waves [3]

“=[”(l’YE:JI

and

y = 2,8 MHz/oe, M=1750 oe, ~= u/2w

and H is the biasing field magnitude.

(4)

(5)

(6)

Considering the case of no ground planes, we determine the
constants in (2) and (4) for the three regions (Fig. 1) by requiring
~ to be finite at y = ~ m, by to be continuous at y = O and
y = – d, h, to be continuous at y = – d and, for a given current
distribution

h ;L,ll–hX1l=.L(x), aty=O. (7)

Application of boundary conditions yields the dispersion relation
(see [3, eq. 17])

[(<x2 -l)sina~d-2acosa~d] =0 (8)

or

2a
z=-&r-l-

az-l+~’
m = 0,1,2,3 . . . . (9)

There are an infinite number of thickness solution modes,
corresponding to the value of m, with m = O giving the funda-
mental mode:

By utilizing (8) and integrating (7) in the x direction, – cc to
m, in the usual manner and integrating in the z direction, – 1,/2
to 11/2, we obtain all constants in (2) and (4). Appropriate
prernultiple factors are used in these integrations.
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Fig, 2. Radiation resistance.

We then obtain expressions for ~ and the components of h in
the three regions. We then perform the usuaf contour integrations
to find the field equations [3].

The magnetostatic wave power obtained from [1]

becomes, after utilizing (1) and the dispersion relation

{

1, ~=()

()

z 2 pow~z(k,) o,
ps= f

n = 2,4,6,...

Y 142

()
4k, d(a2+1) _ _

2nr’
rl=l,3,5, . . .

1

(11)

k, is obtained from the dispersion relation (9), k, is obtained

from (3], ~( k, ) is the Fourier transform of J, ( x) and is obtained
as before [3] for a flat current distribution. Note that even n
produces no solution modes.

T~e radiation resistance for one strip is, for unity current

and the total radiation resistance is twice Rs since the results are

the same for each of the two waves. ~ refers to propagation

direction.

When n = O, the infinite width case, the lower cutoff frequency
is taken as yFf where k, vanishes and the power and radiation

resistance are finite therefrom(n) because of theinfinitebehav-

ior of a there.

For n>O, finite width, the power and radiation resistance

would become infinitely large from (11) at the lower cutoff

frequency where k, is zero since this frequency is greater than yH

anda is not infinite there. However, the following is justification

for taking the lower cutoff frequency to be larger than this value

at which k. $ zero. When magnetostatic wavelengths A, where
A=2n/k, are small compared to the transducer aperture 11, a
well-collimated beam is formed and beam spreading is negligible.
When magnetostatic wavelengths approach or exceed 11, beam
width increases, permitting a smaller portion of the total energy
leaving the transducer to reach the output. This means slower
radiation resistance. In the limit; 1,/A ~ O, one would expect the

radiation resistance to vanish. Thus, instead of taking the lower

cutoff frequency to be at which k~ is zero and power and

radiation resistance are infinite from (11) and (12), we take the

lower cutoff frequency to be at which

k$C=nC(nn/ll) (13)
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Fig. 3, Radiation reactance
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Fig. 4. Insertion loss

where n. is a constant determined so that A <11. Appreciable

beam spreading occurs when [I - A or when (13) is satisfied for

n, -2, when n =1. When n >1, nC is found to be less than 2.

In Fig. 2, we show the totaf radiation resistance for the first

width mode, n =1, for n{ =1, 2, and 3. Here H= 893 and d = 25

u m.
In Figs. 3 and 4, we show the totaf radiation reactance ob-

tained by Hilbert transform and the insertion loss [3] for one
wave, for each of the three values of n,.

We observe that, except at the very beginning of the band-
width, the results are the same for the three n, values so that the
lower cutoff frequency value is not critical, as long as it is
sufficiently higher than that for which k vanishes.

II. CONCLUSION

We have examined magnetostatic forward volume waves for
finite width and have shown that it is physically Justifiable to
remove the end of the bandwidth where k, is zero so that the
radiation resistance is not infinite and the radiation reactance
and insertion loss may be calculated.
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